Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
Scand J Clin Lab Invest ; 84(2): 125-132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619215

RESUMO

This study investigated the effects of hexahydrocannabinol (HHC) and other unclassified cannabinoids, which were recently introduced to the recreational drug market, on cannabis drug testing in urine and oral fluid samples. After the appearance of HHC in Sweden in 2022, the number of posts about HHC on an online drug discussion forum increased significantly in the spring of 2023, indicating increased interest and use. In parallel, the frequency of false positive screening tests for tetrahydrocannabinol (THC) in oral fluid, and for its carboxy metabolite (THC-COOH) in urine, rose from <2% to >10%. This suggested that HHC cross-reacted with the antibodies in the immunoassay screening, which was confirmed in spiking experiments with HHC, HHC-COOH, HHC acetate (HHC-O), hexahydrocannabihexol (HHC-H), hexahydrocannabiphorol (HHC-P), and THC-P. When HHC and HHC-P were classified as narcotics in Sweden on 11 July 2023, they disappeared from the online and street shops market and were replaced by other unregulated variants (e.g. HHC-O and THC-P). In urine samples submitted for routine cannabis drug testing, HHC-COOH concentrations up to 205 (mean 60, median 27) µg/L were observed. To conclude, cannabis drug testing cannot rely on results from immunoassay screening, as it cannot distinguish between different tetra- and hexahydrocannabinols, some being classified but others unregulated. The current trend for increased use of unregulated cannabinols will likely increase the proportion of positive cannabis screening results that need to be confirmed with mass spectrometric methods. However, the observed cross-reactivity also means a way to pick up use of new cannabinoids that otherwise risk going undetected.


Assuntos
Drogas Ilícitas , Detecção do Abuso de Substâncias , Humanos , Detecção do Abuso de Substâncias/métodos , Drogas Ilícitas/urina , Drogas Ilícitas/análise , Suécia , Dronabinol/urina , Dronabinol/análise , Dronabinol/análogos & derivados , Cannabis/química , Saliva/química , Canabinoides/urina , Canabinoides/análise , Canabinol/análise , Canabinol/urina , Reações Cruzadas , Imunoensaio/métodos
2.
Chem Commun (Camb) ; 60(39): 5205-5208, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38652014

RESUMO

This work developed an aptamer-dye complex as a label-free ratiometric fluorescence sensor for rapid analysis of THC and its metabolite in sewage samples. Integrated with a portable fluorescence capture device, this sensor exhibited excellent sensitivity with visualization of as low as 0.6 µM THC via naked-eye observation, and THC analysis can be accomplished within 4 min, which would be a complementary tool for quantifying THC in sewage samples to estimate cannabis consumption.


Assuntos
Aptâmeros de Nucleotídeos , Dronabinol , Corantes Fluorescentes , Esgotos , Aptâmeros de Nucleotídeos/química , Dronabinol/análise , Dronabinol/química , Corantes Fluorescentes/química , Esgotos/análise , Esgotos/química , Espectrometria de Fluorescência , Técnicas Biossensoriais
3.
J Appl Physiol (1985) ; 136(3): 583-591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299223

RESUMO

Herein, we examine the human exercise response following cannabis inhalation, taking into consideration varied cannabinoid concentrations and different inhalation methods. A semirandomized crossover study design was used, with measures of perceived exertion and physiological responses to submaximal and maximal exercise. Participants (n = 14, 9 males 5 females) completed exercise after 1) smoking Δ-9-tetrahydrocannabinol (THC)-predominant cannabis (S-THC), 2) inhaling aerosol (vaporizing) from THC-predominant cannabis (V-THC), 3) inhaling aerosol from cannabidiol (CBD)-predominant cannabis (V-CBD), or 4) under control conditions. All exercise was performed on a cycle ergometer, with submaximal testing performed at 100 W followed by an evaluation of maximal exercise performance using an all-out 20-min time trial. Metabolism was characterized via the analysis of expired gases while subjective ratings of perceived exertion (RPE) were reported. During submaximal cycling, heart rate was higher during S-THC and V-THC compared with both control and V-CBD (all P < 0.02). During maximal exercise, V̇e was lower in V-THC compared with control, S-THC, and V-CBD (all P < 0.03), as was S-THC compared with control (P < 0.05). Both V̇o2 and RPE were similar between conditions during maximal exercise (both P > 0.1). Mean power output during the 20-min time trial was significantly lower in the S-THC and V-THC conditions compared with both control and V-CBD (all P < 0.04). Cannabis containing THC alters the physiological response to maximal and submaximal exercise, largely independent of the inhalation method. THC-containing cannabis negatively impacts vigorous exercise performance during a sustained 20-min effort, likely due to physiological and psychotropic effects. Inhalation of cannabis devoid of THC and primarily containing CBD has little physiological effect on the exercise response or performance.NEW & NOTEWORTHY Inhalation of cannabis containing THC alters physiological responses to both submaximal and maximal exercise and reduces mean power output during a 20-min time trial, regardless of whether it is inhaled as smoke or aerosol. In contrast, cannabis devoid of THC and predominantly containing CBD has no effect on physiological responses to exercise or performance.


Assuntos
Cannabis , Dronabinol , Feminino , Humanos , Masculino , Aerossóis , Canabidiol , Canabinoides , Cannabis/química , Estudos Cross-Over , Dronabinol/análise , Ciclismo
4.
J Anal Toxicol ; 48(3): 165-170, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38343275

RESUMO

In 2018, Canada introduced roadside oral fluid (OF) screening devices, called Approved Drug Screening Equipment (ADSE), as an investigative tool in impaired driving investigations to detect tetrahydrocannabinol (THC), cocaine and/or methamphetamine in drivers. In this work, we compare the detection and concentration of THC in blood samples collected from suspected impaired drivers that tested positive at the roadside for THC on an ADSE. The two ADSEs that were utilized were the Dräger DrugTest® 5000 (DDT) and the Abbott SoToxa™ (SoToxa), both configured with a THC OF concentration cut-off concentration of 25 ng/mL. Blood samples were screened for cannabinoids using immunoassay and positive results were followed up by confirmation/quantitation of THC by ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS). A total of 230 cases were available where a blood sample was collected from a suspected impaired driver subsequent to a positive THC screen result on an ADSE. The blood samples were taken an average of 1.4 hours (range = 9 minutes to 3.2 hours) after the ADSE test. THC was confirmed in 98% of blood samples with concentrations across all samples ranging from not detected (cut = off 0.5 ng/mL) to greater than 20 ng/mL. Further, 90% of the blood samples had a THC concentration of 2.0 ng/mL (the lower per se limit in Canada) or greater. A positive ADSE test of a suspected impaired driver may predict that the driver has a detectable level of THC in their blood, and there is a high likelihood that the THC blood concentration is 2.0 ng/mL or higher. Hence, ADSE may be a useful tool for law enforcement and aid in the development of grounds to believe that a driver is operating a conveyance with a THC concentration exceeding Canadian per se limits.


Assuntos
Dronabinol , Espectrometria de Massas em Tandem , Dronabinol/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Avaliação Pré-Clínica de Medicamentos , Saliva/química , Canadá , Detecção do Abuso de Substâncias/métodos
5.
J AOAC Int ; 107(3): 493-505, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38410076

RESUMO

While current analytical methodologies can readily identify cannabis use, definitively establishing recent use within the impairment window has proven to be far more complex, requiring a new approach. Recent studies have shown no direct relationship between impairment and Δ9-tetra-hydrocannabinol (Δ9-THC) concentrations in blood or saliva, making legal "per se" Δ9-THC limits scientifically unjustified. Current methods that focus on Δ9-THC and/or metabolite concentrations in blood, saliva, urine, or exhaled breath can lead to false-positive results for recent use due to the persistence of Δ9-THC well outside of the typical 3-4 h window of potential impairment following cannabis inhalation. There is also the issue of impairment due to other intoxicating substances-just because a subject exhibits signs of impairment and cannabis use is detected does not rule out the involvement of other drugs. Compounding the matter is the increasing popularity of hemp-derived cannabidiol (CBD) products following passage of the 2018 Farm Bill, which legalized industrial hemp in the United States. Many of these products contain varying levels of Δ9-THC, which can lead to false-positive tests for cannabis use. Furthermore, hemp-derived CBD is used to synthesize Δ8-THC, which possesses psychoactive properties similar to Δ9-THC and is surrounded by legal controversy. For accuracy, analytical methods must be able to distinguish the various THC isomers, which have identical masses and exhibit immunological cross-reactivity. A new testing approach has been developed based on exhaled breath and blood sampling that incorporates kinetic changes and the presence of key cannabinoids to detect recent cannabis use within the impairment window without the false-positive results seen with other methods. The complexity of determining recent cannabis use that may lead to impairment demands such a comprehensive method so that irresponsible users can be accurately detected without falsely accusing responsible users who may unjustly suffer harsh, life-changing consequences.


Assuntos
Cannabis , Dronabinol , Detecção do Abuso de Substâncias , Humanos , Dronabinol/análise , Detecção do Abuso de Substâncias/métodos , Cannabis/química , Saliva/química , Canabidiol/análise , Abuso de Maconha , Testes Respiratórios/métodos , Uso da Maconha
6.
Planta Med ; 90(4): 316-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387478

RESUMO

Concerns about health hazards associated with the consumption of trans-delta-8-tetrahydrocannabinol products were highlighted in public health advisories from the U. S. Food and Drug Administration and U. S. Centers for Disease Control and Prevention. Simple and rapid quantitative methods to determine trans-delta-8-tetrahydrocannabinol impurities are vital to analyze such products. In this study, a gas chromatography-flame ionization detection method was developed and validated for the determination of delta-8-tetrahydrocannabinol and some of its impurities (recently published) found in synthesized trans-delta-8-tetrahydrocannabinol raw material and included olivetol, cannabicitran, Δ 8-cis-iso-tetrahydrocannabinol, Δ 4-iso-tetrahydrocannabinol, iso-tetrahydrocannabifuran, cannabidiol, Δ 4,8-iso-tetrahydrocannabinol, Δ 8-iso-tetrahydrocannabinol, 4,8-epoxy-iso-tetrahydrocannabinol, trans-Δ 9-tetrahydrocannabinol, 8-hydroxy-iso-THC, 9α-hydroxyhexahydrocannabinol, and 9ß-hydroxyhexahydrocannabinol. Validation of the method was assessed according to the International Council for Harmonization guidelines and confirmed linearity with R2 ≥ 0.99 for all the target analytes. The limit of detection and limit of quantitation were 1.5 and 5 µg/mL, respectively, except for olivetol, which had a limit of detection of 3 µg/mL and a limit of quantitation of 10 µg/mL. Method precision was calculated as % relative standard deviation and the values were less than 8.4 and 9.9% for the intraday precision and inter-day precision, respectively. The accuracy ranged from 85 to 118%. The method was then applied to the analysis of 21 commercially marketed vaping products claiming to contain delta-8-tetrahydrocannabinol. The products analyzed by this method have various levels of these impurities, with all products far exceeding the 0.3% of trans-Δ 9-tetrahydrocannabinol limit for hemp under the Agriculture Improvement Act of 2018. The developed gas chromatography-flame ionization detection method can be an important tool for monitoring delta-8-tetrahydrocannabinol impurities in commercial products.


Assuntos
Dronabinol , Dronabinol/análogos & derivados , Resorcinóis , Vaping , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa
7.
Ultrason Sonochem ; 103: 106766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271781

RESUMO

In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.


Assuntos
Cannabis , Extratos Vegetais , Cannabis/química , Ultrassom , Dronabinol/análise , Etanol/análise , Sementes/química , Água/química , Óleos de Plantas/química
8.
Forensic Toxicol ; 42(1): 102-109, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603166

RESUMO

PURPOSE: Cannabis is regulated in many countries, and cannabis products are diversifying, which can hinder identification. Here, we report the seizure of a powder sample with a cannabis-like odor in a spice bottle labeled "nutmeg" and identification of the sample by chemical testing and cannabis DNA testing. METHODS: The sample was observed under a microscope, extracted with methanol, and analyzed by gas chromatography-mass spectrometry (GC-MS). The chemical profile of the seized powder was compared with that of nutmeg samples. Gas chromatography-flame ionization detection was used to estimate the total Δ9-tetrahydrocannabinol (Δ9-THC) concentration in the sample. A commercially available cannabis DNA testing kit was used to confirm the presence of cannabis plant DNA in the seized sample. RESULTS: The characteristics of cannabis in the seized powder were difficult to determine through microscopic observation alone. GC-MS analysis identified ß-caryophyllene (an aromatic component of cannabis) and five cannabinoids unique to cannabis, including Δ9-THC. No common compounds were identified in the seized powder or nutmeg samples. The total Δ9-THC concentration in the sample was very high (approximately 47% by weight). Cannabis DNA testing confirmed that the seized powder contained cannabis. CONCLUSIONS: The seized powder was found to be a processed product made from a finely pulverized resin-like cannabis concentrate. Our results indicate that combined chemical and DNA analysis should help identify cannabis-related samples in various forms.


Assuntos
Cannabis , Alucinógenos , Cannabis/química , Dronabinol/análise , Pós , Cromatografia Gasosa-Espectrometria de Massas , Alucinógenos/análise , Agonistas de Receptores de Canabinoides/análise , DNA de Plantas
9.
Addict Behav ; 150: 107930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091780

RESUMO

OBJECTIVE: Cannabis is widely used, including in early adolescence, with prevalence rates varying by measurement method (e.g., toxicology vs. self-report). Critical neurocognitive development occurs throughout adolescence. Given conflicting prior brain-behavior results in cannabis research, improved measurement of cannabis use in younger adolescents is needed. METHODS: Data from the Adolescent Brain Cognitive Development (ABCD) Study Year 4 follow-up (participant age: 13-14 years-old) included hair samples assessed by LC-MS/MS and GC-MS/MS, quantifying THCCOOH (THC metabolite), THC, and cannabidiol concentrations, and the NIH Toolbox Cognitive Battery. Youth whose hair was positive for cannabinoids or reported past-year cannabis use were included in a Cannabis Use (CU) group (n = 123) and matched with non-using Controls on sociodemographics (n = 123). Standard and nested ANCOVAs assessed group status predicting cognitive performance, controlling for family relationships. Follow-up correlations assessed cannabinoid hair concentration, self-reported cannabis use, and neurocognition. RESULTS: CU scored lower on Picture Memory (p = .03) than Controls. Within the CU group, THCCOOH negatively correlated with Picture Vocabulary (r = -0.20, p = .03) and Flanker Inhibitory Control and Attention (r = -0.19, p = .04), and past-year cannabis use was negatively associated with List Sorting Working Memory (r = -0.33, p = .0002) and Picture Sequence Memory (r = -0.19, p = .04) performances. CONCLUSIONS: Youth who had used cannabis showed lower scores on an episodic memory task, and more cannabis use was linked to poorer performances on verbal, inhibitory, working memory, and episodic memory tasks. Combining hair toxicology with self-report revealed more brain-behavior relationships than self-report data alone. These youth will be followed to determine long-term substance use and neurocognition trajectories.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Abuso de Maconha , Adolescente , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Abuso de Maconha/diagnóstico , Memória de Curto Prazo , Cabelo/química , Cognição , Encéfalo , Dronabinol/análise
10.
Behav Sleep Med ; 22(2): 150-167, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-37255232

RESUMO

INTRODUCTION: Cannabis is increasingly used to self-treat anxiety and related sleep problems, without clear evidence of either supporting or refuting its anxiolytic or sleep aid effects. In addition, different forms of cannabis and primary cannabinoids ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have differing pharmacological effects. METHODS: Thirty days of daily data on sleep quality and cannabis use were collected in individuals who use cannabis for mild-to-moderate anxiety (n = 347; 36% male, 64% female; mean age = 33 years). Participants self-reported both the form (flower or edible) and the ratio of THC to CBD in the cannabis used during the observation period. RESULTS: Individuals who reported cannabis use on a particular day also reported better sleep quality the following night. Moderation analyses showed that better perceived sleep after cannabis use days was stronger for respondents with higher baseline affective symptoms. Further, respondents who used cannabis edibles with high CBD concentration reported the highest perceived quality of sleep. CONCLUSIONS: Among individuals with affective symptoms, naturalistic use of cannabis was associated with better sleep quality, particularly for those using edible and CBD dominant products.


Assuntos
Canabidiol , Cannabis , Fumar Maconha , Masculino , Humanos , Feminino , Adulto , Qualidade do Sono , Dronabinol/análise , Dronabinol/farmacologia , Fumar Maconha/psicologia , Canabidiol/uso terapêutico , Canabidiol/análise , Canabidiol/farmacologia , Ansiedade/complicações
11.
Drug Test Anal ; 16(2): 127-161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37269160

RESUMO

Since the early 2000s, there has been a turmoil on the global illicit cannabinoid market. Parallel to legislative changes in some jurisdictions regarding herbal cannabis, unregulated and cheap synthetic cannabinoids with astonishing structural diversity have emerged. Recently, semi-synthetic cannabinoids manufactured from hemp extracts by simple chemical transformations have also appeared as recreational drugs. The burst of these semi-synthetic cannabinoids into the market was sparked by legislative changes in the United States, where cultivation of industrial hemp restarted. By now, hemp-derived cannabidiol (CBD), initially a blockbuster product on its own, became a "precursor" to semi-synthetic cannabinoids such as hexahydrocannabinol (HHC), which appeared on the drug market in 2021. The synthesis and cannabimimetic activity of HHC were first reported eight decades ago in quest for the psychoactive principles of marijuana and hashish. Current large-scale manufacture of HHC is based on hemp-derived CBD extract, which is converted first by cyclization into a Δ8 /Δ9 -THC mixture, followed by catalytic hydrogenation to afford a mixture of (9R)-HHC and (9S)-HHC epimers. Preclinical studies indicate that (9R)-HHC has THC-like pharmacological properties. The animal metabolism of HHC is partially clarified. The human pharmacology including metabolism of HHC is yet to be investigated, and (immuno)analytical methods for the rapid detection of HHC or its metabolites in urine are lacking. Herein, the legal background for the revitalization of hemp cultivation, and available information on the chemistry, analysis, and pharmacology of HHC and related analogs, including HHC acetate (HHC-O) is reviewed.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Drogas Ilícitas , Animais , Humanos , Estados Unidos , Canabinoides/análise , Cannabis/química , Agonistas de Receptores de Canabinoides , Dronabinol/análise
12.
Drug Test Anal ; 16(2): 174-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37309060

RESUMO

Reports suggest that cannabis potency has dramatically increased over the last decade in the USA and Europe. Cannabinoids are the terpeno-phenolic compounds found in the cannabis plant and are responsible for its pharmacological activity. The two most prominent cannabinoids are delta-9-tetrahydrocannabinol (Δ9 THC) and cannabidiol (CBD). Cannabis potency is measured not only by the Δ9 THC levels but also by the ratio of Δ9 THC to other non-psychoactive cannabinoids, namely, CBD. Cannabis use was decriminalized in Jamaica in 2015, which opened the gates for the creation of a regulated medical cannabis industry in the country. To date, there is no information available on the potency of cannabis in Jamaica. In this study, the cannabinoid content of Jamaican-grown cannabis was examined over the period 2014-2020. Two hundred ninety-nine herbal cannabis samples were received from 12 parishes across the island, and the levels of the major cannabinoids were determined using gas chromatography-mass spectrometry. There was a significant increase (p < 0.05) in the median total THC levels of cannabis samples tested between 2014 (1.1%) and 2020 (10.2%). The highest median THC was detected in the central parish of Manchester (21.1%). During the period, THC/CBD ratios increased from 2.1 (2014) to 194.1 (2020), and there was a corresponding increase in the percent freshness of samples (CBN/THC ratios <0.013). The data show that a significant increase in the potency of locally grown cannabis has occurred in Jamaica during the last decade.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Cannabis/química , Dronabinol/análise , Jamaica , Canabinoides/análise , Canabidiol/análise , Agonistas de Receptores de Canabinoides
13.
Drug Test Anal ; 16(2): 210-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37343943

RESUMO

The analysis of cannabinoids in whole blood is usually done by traditional mass spectrometry (MS) techniques, after offline cleanup or derivatization steps which can be lengthy, laborious, and expensive. We present a simple, fast, highly specific, and sensitive method for the determination of Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-hydroxy-Δ9 -tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol (THC-COOH) in 50 µL whole blood samples. After the addition of deuterated internal standards (IS) and a simple protein precipitation step, an online extraction of sample supernatants using turbulent flow chromatography (TurboFlow-Thermo Scientific) was carried out. Analytes were separated on a C18 analytical column and detected by LC-HRAM-Orbitrap-MS using a Thermo Scientific Q Exactive Focus MS system. MS detection was performed in polarity switching and selected ion monitoring (SIM) modes using five specific acquisition windows, at a resolution of 70,000 (FWHM). Total run time was about 10 min including preanalytical steps. Method validation was carried out by determining limit of detection (LOD), lower limit of quantitation (LLOQ), linearity range, analytical accuracy, intra-assay and interassay precision, carry-over, matrix effect, extraction recovery, and selectivity, for all analytes. Measurement uncertainties were also evaluated, and a decision rule was set with confidence for forensic purposes. The method may become suitable for clinical and forensic toxicology applications, taking advantage of the small matrix volume required, the simple and cost-effective sample preparation procedure, and the fast analytical run time. Performances were monitored over a long-term period and tested on 7620 driving under the influence of drugs (DUID) samples, including 641 positive samples.


Assuntos
Canabinoides , Dirigir sob a Influência , Canabinoides/metabolismo , Dronabinol/análise , Espectrometria de Massas , Canabinol/análise , Cromatografia Líquida/métodos
14.
J AOAC Int ; 107(1): 140-145, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37819769

RESUMO

BACKGROUND: Cannabis sativa is known to produce a class of terpenophenolic compounds named cannabinoids. The two main ones are cannabidiol (CBD) and tetrahydrocannabinol (THC), which have therapeutic properties. In the development of cannabis-based preparations, it is important to have suitable analytical methods for the analysis of the principal cannabinoids. OBJECTIVE: This study aimed to develop and validate a simple and rapid HPLC method with photodiode array detection for determination of CBD and THC in Cannabis sativa oil extract and infused ice cream, including a stability study. METHOD: Chromatographic separation of CBD and THC was performed with a C18 column, with a mobile phase consisting of acetonitrile and water with formic acid (80 + 20 v/v) in isocratic elution mode, with detection at 208 nm for CBD and 280 nm for THC and 1.0 mL/min flow rate. RESULTS: The method was linear over a range of 1-5 µg/mL for CBD, and 20-100 µg/mL for THC; the relative standard deviation was <3.6%, the recovery ranged between 98.8 and 102.5% for oil and between 84 and 94% for ice cream, QL was 0.33 µg/mL for CBD and 2.30 µg/mL for THC, and the assay demonstrated adequate selectivity. CBD and THC were stable for at least 28 days under light protection at 22°C, 4°C, and -20°C in the oil and for at least 60 days at -20°C in the ice cream. CONCLUSIONS: The results showed that the method was suitable for quantitative determination of CBD and THC in Cannabis sativa oil extract and infused ice cream, and it is useful for quality control purposes. HIGHLIGHTS: The method is simple and fast, and it is useful for the quality control of a new product corresponding to an ice cream based on a Cannabis sativa oil extract.


Assuntos
Canabidiol , Canabinoides , Cannabis , Sorvetes , Canabinoides/análise , Cannabis/química , Dronabinol/análise , Sorvetes/análise , Canabidiol/análise , Extratos Vegetais/química
15.
J Sep Sci ; 47(1): e2300630, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904320

RESUMO

Hemp-based materials have gained interest as alternative feed ingredients for livestock. However, safety concerns arise regarding the transfer of cannabinoids from the plant to the animals. Addressing these concerns requires the use of methods capable of detecting and quantifying cannabinoids in livestock. In this study, a fast and sensitive method was developed for quantification of cannabinoids and cannabinoid metabolites in cattle plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction of cannabinoids from the plasma matrix was achieved by combining the Captiva Enhanced Matrix Removal-Lipid clean-up and salting-out assisted liquid-liquid extraction procedure. The developed method underwent validation using various analytical parameters, and the results demonstrated good accuracy, precision, specificity, and high sensitivity. The method was applied to real plasma samples obtained from cattle fed hemp for 2 weeks, and successfully detected various cannabinoids, including delta-9-tetrahydrocannabinol. Furthermore, the study revealed that 7-carboxy cannabidiol, a metabolite of cannabidiol, was the predominant cannabinoid present in the cattle plasma throughout the feeding period, which could remain detectable for weeks after the hemp feeding had ended.


Assuntos
Canabidiol , Canabinoides , Cannabis , Bovinos , Animais , Canabinoides/análise , Canabidiol/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Dronabinol/análise
16.
Anal Bioanal Chem ; 416(1): 255-264, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924377

RESUMO

In this work, a low-cost and eco-friendly paper-based analytical device (PAD) method is described for the determination of phyto-cannabinoids in cannabis and oral fluids based on a simple colorimetric reaction. The PAD was able to distinguish tetrahydrocannabinol (THC)- and cannabidiol (CBD)-rich plant samples by using 4-aminophenol (4-AP) and later on to quantify total phyto-cannabinoid content (THC + CBD + CBN) in plant and oral fluids by using the Fast Corinth V reagent. The chemical and physical properties regarding paper type and reagent concentration in the PAD were optimized to achieve the best analytical performance. After that, analytical features were obtained, including a linear range of 0.01-0.1 mg mL-1, a limit of detection (LOD) of 0.003 mg mL-1, and a suitable precision, expressed as relative standard deviation (RSD) lower than 10%. Furthermore, no significant interferences were observed in colorimetric reactions when tea, herbs, and drug samples were analyzed. Additionally, the PAD proved color stability up to 1 month after the sampling at 25 °C. The developed PAD was suitable for determining total phyto-cannabinoid content in plants and oral fluids, obtaining good results compared to GC-MS. Overall, this method showed good reliability resulting in an operational on-site device for drug monitoring.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Dronabinol/análise , Reprodutibilidade dos Testes , Cannabis/química , Canabidiol/análise
17.
Food Chem ; 440: 138187, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134831

RESUMO

Δ8-Tetrahydrocannabinol (Δ8-THC) is increasingly popular as a controversial substitute for Δ9-tetrahydrocannabinol (Δ9-THC) in cannabinoid-infused edibles. Δ8-THC is prepared from cannabidiol (CBD) by treatment with acids. Side products including Δ9-THC and other isomers that might end up in Δ8-THC edibles are less studied. In this paper, three orthogonal methods, namely reversed-phase (RP)-UHPLC-DAD/HRMS, normal-phase/argentation (silica-Ag(I))-HPLC-DAD/MS, and GC-FID/MS were developed for analysis of cannabinoid isomers, namely Δ8-THC, Δ9-THC, CBD, Δ8-iso-THC, Δ(4)8-iso-THC, and hydrated THC isomers. Eight acid-treated CBD mixtures contained various amounts of Δ8-THC (0-89%, w/w%), high levels of Δ9-THC (up to 49%), Δ8-isoTHC (up to 55%), Δ(4)8-iso-THC (up to 17%), and three hydrated THC isomers. Commercial Δ8-THC gummies were also analyzed, and issues like overclaimed Δ8-THC, excessive Δ9-THC, undeclared Δ8-iso-THC, and Δ(4)8-iso-THC were found. These findings highlight the urgency of improving regulations towards converting CBD to Δ8-THC for use as food ingredients.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massa com Cromatografia Líquida
18.
Indian J Med Res ; 158(5&6): 535-541, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929356

RESUMO

BACKGROUND OBJECTIVES: Cannabis use has long been associated with celebration and hospitality, although abuse must be confirmed through testing. It has always been difficult to develop an accurate and reliable confirmatory method for the quantification of tetrahydrocannabinol carboxylic acid (THC-COOH) that meets local requirements. The goal was to develop a rapid, cost-effective analytical technique that can handle large batches. METHODS: Because of the wide metabolite detection window and ease of collection, urine was preferable sample. The extraction of a pre-screened urine sample (adulteration and multidrug screening) was done on Bond Elut cartridges using a positive pressure vacuum manifold, followed by quantification using a gas chromatograph and mass spectrometer. RESULTS: The assay was linear between 15 and 300 ng/ml ( r2 of 0.99). The intra-day precision was 8.69 per cent and the inter-day precision was 10.78 per cent, respectively with a 97.5 per cent recovery rate for the lowest concentration. A total of 939 urine samples were examined, with 213 detecting cannabis. Sixty per cent of the total individuals tested positive for simply cannabinoids, 33 per cent for cannabinoids and sedatives, five per cent for cannabinoids and morphine and one for cannabis, morphine and cocaine. INTERPRETATION CONCLUSIONS: Assay characteristics included modest sample preparation, rapid chromatography, high specificity and small sample volume with a processing time of 12 h. The assay described here can be applied for diagnostic laboratories and in forensic settings as well.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Abuso de Maconha , Humanos , Dronabinol/análise , Dronabinol/urina , Detecção do Abuso de Substâncias/métodos , Derivados da Morfina
19.
J Anal Toxicol ; 47(9): 818-825, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864499

RESUMO

Hexahydrocannabinol (HHC) is an emerging semi-synthetic cannabinoid, which is obtained from cyclization of cannabidiol and subsequent hydrogenation. As a potentially legal alternative of ∆9-tetrahydrocannabinol (∆9-THC), it is increasingly seized in the USA and Europe. The aims of this study were to investigate the metabolism of HHC in pooled human liver S9 fraction (pHLS9), rat and human samples. Additionally, a locally obtained low-THC cannabis product was investigated, which was advertised with an elevated concentration of HHC. Overall, HHC formed an 11-hydroxy (HO) metabolite, as well as a carboxy metabolite. While only the parent compound was detected in rat urine and feces, the hydroxy metabolite was additionally detected in pHLS9 and human plasma. The carboxy metabolite was only detectable in human plasma. The metabolism corresponded well to that of ∆9-THC, although glucuronidation and the formation of an 8-HO metabolite were not observed. Detectability of HHC and its carboxy metabolite in rat urine was investigated using gas chromatography-mass spectrometry, but neither the parent compound nor the metabolite were detectable. The investigated low-THC cannabis product appeared to be an actual cannabis product since, in addition to HHC, cannabinol, cannabidiol and ∆9-THC were detected after qualitative analysis. Estimation of its content revealed not only 30.6% of HHC but also 4% of ∆9-THC.


Assuntos
Canabidiol , Canabinoides , Alucinógenos , Humanos , Ratos , Animais , Dronabinol/análise , Cromatografia Líquida de Alta Pressão , Canabinoides/análise , Fígado/química
20.
Anal Chim Acta ; 1279: 341768, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827668

RESUMO

Cannabis is a plant that is harmful and beneficial because it contains more than 400 bioactive compounds, and the main compounds are Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Currently, cannabis extracts are used in medicine, but the amount of THC as a main psychoactive component is strictly regulated. Therefore, the ability to rapidly and accurately detect THC is important. Herein, we developed a sensitive electrochemical method combining a rapid lateral flow assay (LFA) to detect THC rapidly. An electrochemical LFA device was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding of THC to the cannabinoid type 2 (CB2) receptor in the test zone. The ferrocene carboxylic acid attached to the monoclonal THC antibody acts as an electroactive species when it binds to the THC in the sample before it flows continuously to the CB2 receptor region on the electrode. Under optimal conditions, the detection time is within 6 min and the devise shows excellent performance with a detection limit of 1.30 ng/mL. Additionally, the device could be applied to detect THC in hemp extract samples. The results obtained from this sensor are similar to the standard method (HPLC) for detecting THC. Therefore, this proposed device is useful as an alternative device for the on-site determination of THC because it is inexpensive, portable, and exhibits high sensitivity.


Assuntos
Canabidiol , Cannabis , Dronabinol/análise , Cannabis/química , Canabidiol/análise , Canabidiol/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA